MeyerFire
  • Blog
  • Daily
  • Exam Prep
    • CFPS Tools
    • NICET Tools
    • PE Forum & Errata
    • PE Problems
    • PE Store
    • PE Tools
    • PE Prep Series
  • TOOLS
    • TOOLKIT (FREE TRIAL)
    • *TOOLKIT (PURCHASE)
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND
    • FIRE PUMP ANALYZER
    • FIRE PUMP DATABASE*
    • FIRE FLOW CALCULATOR*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'19)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • REMOTE AREA ANALYZER
    • QUICK RESPONSE AREA REDUCTION
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • CODE CALLS
  • LOGIN
  • STORE
  • About
Picture
A FORUM FOR FIRE PROTECTION QUESTIONS & PE EXAM PROBLEMS | SUBSCRIBE NOW

Lower Velocity Where Hazen-Williams Not Valid?

5/11/2020

7 Comments

 
I am interested if anyone is aware of any research or article that provides guidance on the lowest water velocity that is acceptable for performing a C-factor calculation for a 6” pipe?

I am curious if there is a lower flow velocity where the Hazen-Williams equation may not be valid.

​Posted anonymously for discussion. Discuss This | Submit Your Question | Subscribe
7 Comments
Dan Wilder
5/11/2020 09:08:52 am

Actually, HW would be your "Go-To" until either higher velocities or different viscosity's are being used. Below are some good articles to read.

https://sprinklerage.com/understanding-darcy-weisbach-equation/

https://www.vikinggroupinc.com/sites/default/files/documents/Calculating%20Friction%20Loss.pdf

Reply
Mike
5/11/2020 10:28:19 am

Why would you want lower velocities? As understand it, H-W is for laminar flow and lower velocities would be laminar flow.

Anyone here validate that?

Reply
Ivonn
5/11/2020 11:24:01 am

I agree with you, H-W is for laminar flow, so if He/She had low velocity won't be a problem

Reply
Ivonn
5/11/2020 10:59:45 am

In NFPA 13 Ed.2019 include a new statement in the section 27.2.1.4 says : the velocity of water flow shall not be limited when hydraulic calculations are performed using the Hazen - Williams.

Hazen-Williams and Darcy–Weisbach are empirical equations, if you do a comparative of pressure loss with the same pipe and same velocity there are differences in the lost, I did several examples with a hydronics software and the lost are always greater with hazen-williams I think maybe for that NFPA 13 said there are no problem with the velocity.

Hazen-Williams empirical test are with laminar flow for that in the oldest time FM Global and other AHJ sugesst 20-30 ft/s to avoid turbulence,but like a said in this point there is not limitation in NFPA or FM Global.

Reply
SK
5/11/2020 04:15:33 pm

As far as my knowledge, none of the NFPA provides any limitation in velocity criteria for fire water system, sometime rather these limitation comes from piping materials as guidance...e.g. Metallic pipe, 3.0 m/s or non-metallic pipes 5.0 m/s...

In terms of NFPA 13, it does not provide a specific velocity limitation for the use of the Hazen-Williams formula. This is, in
part, due to an expectation that excessive friction loss values
will result in increasing pipe sizes, thereby serving as an inherent limit on velocity. However, the fact that NFPA 13 does not provide a specific limit should not be taken as an endorsement that the formula can be used for any velocity of water flow. The formula was empirically determined using “normal” conditions.
When the velocity in the pipe exceeds that which was
used to determine the formula, the formula might no longer
be valid. There has been some research performed (Huggins
1996) in which results using the Hazen-Williams formula and
the Darcy-Weisbach formula were compared, and the conclusion was that a specific velocity limit applied to all pipe sizes is not appropriate.

Reply
Mark
5/11/2020 11:46:49 am

Maybe I am not reading the question correctly but the C Factor is defined in NFPA 13 based on pipe material?

Reply
Mike
5/12/2020 01:00:49 am

C factor is basically a coefficient of roughness that can change over time. Easily determined in existing systems if all other factors are known.

Reply



Leave a Reply.

    Jump to: Daily Posts
    Jump to: PE Problems
    Picture
    Why Sponsor?

    Free Signup

    Subscribe and learn something new each day:
    I'm Interested In:

    Community

    Thank You to Our Top
    ​October '20 Contributors!
    1. SK
    2. Franck
    3. Dan W.
    4. Jonathan ​5. Casey M.
    6. Sean
    7. Colin L.
    8. Mike
    9. Jonathan J
    ​10. Daniel G.


    Your Post

    SUBMIT A QUESTION

    The Toolkit

    Sprinkler Designer or Engineer?
    ​
    ​Get all of our tools, including the Sprinkler Database, Friction Loss Calculator, Fire Pump Analyzer and more:
    Picture
    FREE 30-DAY TRIAL
    GET THE TOOLKIT

    Filters

    All
    ABA
    ADA
    ASCE 7
    ASME A17.1
    Daily Discussion
    Design Documents
    Explosion Protection & Prevention
    Fire Detection And Alarm Systems
    Fire Dynamics
    Flammable & Combustible LIquids
    FM Global
    Human Behavior
    IBC
    IFC
    Information Sources For Analysis
    IRC
    Means Of Egress
    NFPA 1
    NFPA 10
    NFPA 101
    NFPA 11
    NFPA 110
    NFPA 12
    NFPA 13
    NFPA 13D
    NFPA 13R
    NFPA 14
    NFPA 15
    NFPA 17A
    NFPA 20
    NFPA 2001
    NFPA 214
    NFPA 22
    NFPA 24
    NFPA 25
    NFPA 291
    NFPA 30
    NFPA 33
    NFPA 400
    NFPA 415
    NFPA 497
    NFPA 5000
    NFPA 502
    NFPA 54
    NFPA 55
    NFPA 70
    NFPA 72
    NFPA 92
    NICET
    Passive Building Systems
    PE Prep Guide
    PE Prep Series
    PE Sample Problems
    Poll
    Smoke Management Systems
    Special Hazard Systems
    Types Of Analysis
    UFC 3 600 01
    UFC 3-600-01
    Updates
    Water Based Fire Suppression
    Weekly Exams


    Archives

    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    November 2016
    October 2016
    July 2016
    June 2016
    June 2015


    Daily
    Daily discussions are open-ended fire protection, fire alarm, and life safety questions submitted anonymously for the benefit of sharing expertise and learning from other perspectives. Anyone can submit a question here:
    SUBMIT A QUESTION

    Exam Prep

    Picture
    2020 PE Prep Guide​
    ​(Available Now!)
    Picture
    PE Prep Series
    ​(Available Now!)
    2020 PE Prep Series
    Current Leaderboard
    ​(Click to enlarge)
    Fire Protection PE Exam Prep

    PE Problems
    ​Visit July-October for daily Fire Protection PE Exam sample questions.

    Solutions are posted the day after posting.

    Comment with your solutions, questions or clarifications.

    Please note that questions posted are unofficial and in accordance with NCEES rules are intended to be similar to actual exam questions, not actual exam questions themselves.

    RSS Feed

Home - About - Blog - Contact - Exam Prep - Store
Picture
Copyright © 2020 MeyerFire, LLC
The views, opinions, and information found on this site represent solely the author shown and do not represent the opinions of any other party, nor does the presented material assume responsibility for its use. Fire protection and life safety systems constitute a critical component for public health and safety and you should consult with a licensed professional for proper design and code adherence. Some (not all) outbound links on this website, such as Amazon links, are affiliate-based where we receive a commission for orders placed elsewhere.
  • Blog
  • Daily
  • Exam Prep
    • CFPS Tools
    • NICET Tools
    • PE Forum & Errata
    • PE Problems
    • PE Store
    • PE Tools
    • PE Prep Series
  • TOOLS
    • TOOLKIT (FREE TRIAL)
    • *TOOLKIT (PURCHASE)
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND
    • FIRE PUMP ANALYZER
    • FIRE PUMP DATABASE*
    • FIRE FLOW CALCULATOR*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'19)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • REMOTE AREA ANALYZER
    • QUICK RESPONSE AREA REDUCTION
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • CODE CALLS
  • LOGIN
  • STORE
  • About