Estimating Pipe Sizes for Sprinkler Systems
Occasionally when designing fire sprinkler systems I'm interested in approximately sizing a specific run of pipe early in a project. That point of interest is often an underground service entry, a main for coordination, or even standpipes. Prior to doing a complete set of hydraulic calculations, running a quick calc using the HazenWilliams formula can help give an order of magnitude pressure loss that is helpful with initial sizing. Here's the calculator I use for these estimates. Don't see the tool below? See it here. Example: Underground Service Main Sizing Consider a new project with an Ordinary Hazard Group II fire sprinkler system. What should the underground service size be? A 4inch fire main can be permitted under special circumstances (see NFPA 13 2002 Section 15.1.3, 20072010 23.1.3, 20132016 24.1.3). A 6inch fire main is common. Is an 8inch necessary? If the length of the service main is 10 feet, my answer can often be quite different than if the service main is 1,000 feet. For this exercise I often run a quick calculation to judge the pressure loss in this single pipe as opposed to running calculations for a full system, to get order of magnitude pressure loss. Let's assume a long service main length of 750 feet. HazenWilliams Formula NFPA 13 stipulates the HazenWIlliams formula be used for pipe friction loss calculations for systems other than antifreeze (NFPA 13 2002 Section 14.4.2.1, 20072010 22.4.2.1, 20132016 23.4.2.1). The HazenWIlliams formula, while generally considered conservative, only requires the flow, friction loss coefficient (or CFactor), and the actual internal diameter of the pipe. Estimating Flow for a Sprinkler System For an Ordinary Hazard Group II example, I can roughly estimate the flow for the system simply based on density and area (assuming the density/area calculation approach). A density of 0.20 gpm/sqft over the most remote 1,500 sqft begins to look like:
Approximate Flow = Density x Area x Overflow Rate + Hose Allowance
Approximate Flow = (0.20 gpm/sqft) x (1,500 sqft) x (1.3) + (250 gpm) Approximate Flow = 640 gpm
Why include the Overflow Rate? Naturally a fire sprinkler system is not going to be perfectly balanced.
While my most remote sprinkler can be calculated at exactly 7 psi and it's kfactor that throws exactly 0.20 gpm/sqft, the feed to that sprinkler will have friction loss. Due to that loss, the adjacent sprinkler will experience a slightly higher pressure than 7 psi and thus will throw slightly more water. This process repeats where sprinklers closer to the riser will provide more than the stipulated density. For orderofmagnitude estimates, I've found that a 30% overflow will be generally close to the final flow result. Pipe Schedule The pipe thickness affects the actual internal diameter of the pipe, so I've included it here. I typically will use Schedule 40 pipe for sizes 2inch and smaller (so that they may have threaded ends), but I've left the schedule type open to users as I know these preferences can vary. CFactors The CFactor relates to the frictionloss due to the surface of the interior of the pipe. NFPA 13 stipulates CFactors for fire sprinkler systems depending upon the type of system and pipe material. These can be found in NFPA 13 2002 Table 14.4.4.5, 20072010 Table 22.4.4.7, 2013 Table 23.4.4.7.1, 2016 Table 23.4.4.8.1. Note that important and impactful changes to the cfactors occurred in the 2013 edition for use of galvanized steel, which has been found to accelerate corrosion by focusing the corrosive action at specific weak points in pipe. Friction Losses With only a few inputs (Flow, Pipe Thickness, CFactor, and Length of Pipe) you'll now have a comparison of pressure loss across a handful of pipe sizes. Punch in 640 gpm, a Global Cfactor of 140 for underground pipe, and a 750 foot pipe length to test this example. If there is plenty of water at high pressure available to the site, perhaps a 48 psi drop on the service entry could be tolerable and a 4inch main could be used where it meets other NFPA 13 requirements. For the vast majority of projects I cover this loss (48 psi) would not be acceptable. The 6inch service main shows a pressure loss of under 7 psi, and an 8inch shows under 2 psi loss. Depending on the water to the site, either of these begin to look much more reasonable. The Friction Loss Calculator This tool is designed to give quickcomparisons of pressure loss for a run of pipe and compare it against other pipe sizes. Do you get these free weekly articles? If not, subscribe here.
Landon Veitenheimer
3/21/2018 11:30:13 am
Awesome stuff!!! Thank you
Brian H
3/21/2018 01:44:06 pm
Great stuff. Very excited about future post.
Rob Stewart
3/22/2018 07:50:53 am
Very helpful. It's great that you are willing to share.
Tom Taylor
3/30/2018 10:19:06 am
Nice work Joe!
Daniel Harper
2/26/2020 08:33:07 pm
Hi, Can you clarify if hose stream requirements and standpipe requirements are the same thing? If not would you include the standpipe flow requirement in the above calculation?
Joe Meyer
2/27/2020 09:22:43 am
Hi Daniel, Comments are closed.

ALLACCESSSUBSCRIBEGet Free Articles via Email:
+ Get calculators, tools, resources and articles
+ Get our PDF Flowchart for Canopy & Overhang Requirements instantly + No spam
+ Unsubscribe anytime AUTHORJoe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About FILTERS
All
ARCHIVES
July 2021
