MeyerFire
  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • About
    • Catalog
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT
Picture

A New Fire Sprinkler Test & Drain Flow Calculator

11/6/2019

 
I was asked recently for a specific project how much flow the owner should anticipate coming from a building's main drain. 

There's just a few factors that play into exactly how much water to expect. Is the drain serving as the main drain for a system? Is it only serving an inspector's test? Is the drain off a 1-inch pipe, or 2-inch? How much pressure is on the system?

These aren't often difficult to answer if you're familiar with the job, but each of these answers plays a role in determining how much water will come out of an open orifice.

This week I've simplified a few of these parameters to come up with a quick inspector's test and drain calculator for fire sprinkler systems.

With it, you can estimate the amount of flow that will come from an inspector's test (use the k-factor option) or from a drain (diameter option). For our international audience I have incorporated real units from the get-go this time. It's a free tool that's now live on the site, here.

Give it a spin and let me know what you think in the comments here. 
​

Know others that might find this helpful? Send them a link or tell them to subscribe here. 

Thanks & have a great week!
Karen Papsin
11/7/2019 12:49:52 pm

This is a great tool and illustrates why it's best for the main drain to extend outdoors. It's a lot of water! It's difficult for a floor drain to handle such a large flow.

Khaja Rafiuddin Ahmed
11/13/2019 10:15:52 pm

It is always recommended to bring the test line outside the building, it's highly impossible for a 4" floor drain to handle this flow.

BMS link
11/19/2019 08:49:48 am

bonjour,
comment vous contacter pour avoir plus d'informations?

Ty Allan link
12/3/2019 11:37:10 am

This is a great tool, but I think that it could use some further info. I recently used this tool to estimate how much water that would be coming from our main drain tests for a large project I am designing. The issue that I find is that this gives you the total flow as if it were a 2" diameter hole in the pipe. It does not take into the account the valves fittings and pipe that you need to run over to the drain, which can reduce the flow exponentially. I came across this when asked a what the flow will be out of our test and drain, and our in house FPE was on a job site. I put the system pressure in as it asked and filled out all the other info and it gave me a total of 1500 gpm, as we have a 150 psi pump on the project. The plumber freaked out and said that they have never seen that much flow from a sprinkler drain. When my FPE got back into the office we did the calc his way and come up with around 750 GPM, worst case. Your math work perfect if you do the calc so that the "System Pressure" takes in account of all the loss though the pipe, fittings and valves, but if you just put your actual system pressure in, I don't believe this provides an accurate flow. Love what you do, keep it up!

Joe Meyer
12/3/2019 11:46:22 am

This is really outstanding feedback.

I'm thinking I should add in the friction loss to account for the pressure drop between the rise gauge and the drain opening. This would account for multiple fittings and pipe friction loss.

Then, the actual amount of discharge should correlate to the actual pressure at the opening (instead of the pressure on the system). Would you agree?

Ty Allan
12/3/2019 12:18:09 pm

Yes, ideally it would be nice to be able to add the total feet of pipe over to the drain, maybe a total of fittings and possibly a pull down to show the loss though the testing device, Whether that be a ball valve or a AGF test and drain.


Comments are closed.
    Picture
    Why Sponsor?

    ALL-ACCESS

    Picture
    GET THE TOOLKIT

    SUBSCRIBE

    Get Free Articles via Email:
    + Get calculators, tools, resources and articles
    + Get our PDF Flowchart for Canopy & Overhang Requirements instantly
    Picture
    + No spam
    ​+ Unsubscribe anytime
    I'm Interested In:

    AUTHOR

    Joe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About


    FILTERS

    All
    Announcements
    Book Review
    Calculators
    Career
    Course
    Design Challenge
    Fire Alarm
    Fire Events
    Fire Suppression
    Flammable & Combustible Liquids
    Flexible Drops
    Floor Control Valve
    Life Safety
    News
    NICET
    Passive Fire Protection
    PE Exam
    Products
    Site Updates
    Special Hazards
    Sprinkler Systems
    Standpipes
    Tools
    Videos


    ARCHIVES

    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017
    September 2016
    August 2016
    July 2016
    June 2016
    July 2015
    June 2015
    May 2015

    RSS Feed

Picture
​Home
Our Cause
The Blog
The Forum
PE Exam Prep
The Toolkit

MeyerFire University
​Pricing
Login
​Support
Contact Us
Picture

MeyerFire.com is a startup community built to help fire protection professionals shine.
Our goal is to improve fire protection practices worldwide. We promote the industry by creating helpful tools and resources, and by bringing together industry professionals to share their expertise.

​MeyerFire, LLC is an International Code Council Preferred Education Provider.

All text, images, and media ​Copyright © 2023 MeyerFire, LLC

We respect your privacy and personal data. See our Privacy Policy and Terms of Service. 
The views, opinions, and information found on this site represent solely the author and do not represent the opinions of any other party, nor does the presented material assume responsibility for its use. Fire protection and life safety systems constitute a critical component for public health and safety and you should consult with a licensed professional for proper design and code adherence.

Discussions are solely for the purpose of peer review and the exchange of ideas. All comments are reviewed. Comments which do not contribute, are not relevant, are spam, or are disrespectful in nature may be removed. Information presented and opinions expressed should not be relied upon as a replacement for consulting services. Some (not all) outbound links on this website, such as Amazon links, are affiliate-based where we receive a small commission for orders placed elsewhere.

  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • About
    • Catalog
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT