A couple weeks ago we updated the NFPA 13 shop drawing checklist with new references to the 2019 and 2022 Editions of NFPA 13. With the 2022 update, the NFPA 13 Committee revamped the list of requirements for “working drawings” in the 2022 Edition. It was pretty much gutted and rewritten. DOES A 2022 UPDATE CHANGE ANYTHING? What impact does this actually have for me or my team? Who uses the 2022 Edition right now? Well, perhaps no local jurisdictions have adopted the 2022 Edition yet. Perhaps that’s a few years away still. But what about US Federal work, which references the latest standard edition at the time of the job posting? Or large corporate or healthcare users who might mandate adherence to the latest codes & standards? Or, what if we’re just being prudent and looking to be ready to adapt when it is enforced? Well, yes then, it could have an impact on your process whether you’re creating the working drawings or reviewing them. Here’s the list of noteworthy changes to the working drawing list as I understand them. Please note that I’m far from a Committee member and it’s only my interpretation of the list. As this plays out in time, I’m sure plenty of gray areas will get sorted out in online discussions, informal clarifications, or code changes. The list of shop drawing requirements went through an entire revamp with the 2022 Edition. #1 SHOW THE MEANS OF FORWARD FLOW (ADDED IN 2019) A means of conducting a forward-flow test has long been required, but historically overlooked or was possibly achievable by flowing out of a fire department connection or main drain (for very low hazards). We talked about the big change for a fixed means of forward flow that was introduced in 2019 and clarified in 2022. How does this affect shop drawings? Well, we now need to locate and identify the means of forward flow on the plans [NFPA 13-2019 Section 27.1.3(25) and 2022 Section 28.1.3(18)]. The location and labeling of the means of forward flow is required in the 2019 and 2022 Editions of NFPA 13. #2 THE BUILDING CROSS-SECTION WAS REMOVED If you’ve ever prepared or seen a random building cross-section on shop drawings (with no pipe or sprinklers shown), that’s because NFPA 13 had a requirement showing a full-height cross section that showed ceiling construction, protection for non-metallic pipe, and structural member information. This was a constant source of review comments, which does help clarify what’s going on, but is only a single slice of a building that otherwise could be very complex. In the 2022 Edition, the list goes away from the building cross section and instead requires identification and locations of major structural members [2022 28.1.3(11)], labels of Obstructed or Unobstructed where applicable [2022 28.1.3(11)], and ceiling heights labeled on the plans [2016 23.1.3(45), 2019 27.1.3(5), and 2022 28.1.3(9)]. From a matter of design and practicality, showing ceiling heights and structural members on the plans themselves helps us all communicate a bit better. Showing all the ceiling heights, structure, and Obstructed vs. Unobstructed with plan labels was something I incorporated a few years ago and helped me be more disciplined during design. It also beats out a single-slice section of a building that may or may not actually clarify how much of the building is being constructed. A building section that doesn't detail sprinklers or pipe, nor is at a position or scale that effectively communicates the relationship of structure, ceilings, and coverage - doesn't do a lot of good. It may not have been the original intent of NFPA 13 anyway. The NFPA 13-2022 Edition removed the requirement for a whole-building cross section but added plenty of labels and requirements to the floor plans to adequately address the original reason for inclusion. #3 LIGHTS, DIFFUSERS, AND OTHER CEILING FIXTURES Many bid specifications require that lights, diffusers and other ceiling-mounted devices (fire alarm, occupancy sensors, etc) be shown on sprinkler working drawings. Doing so certainly helps prove that the ceilings have been coordinated – or at least other systems considered. But now that’s been codified. In the 2022 Edition, Section 28.1.3(8) requires diffusers, lights, and other ceiling fixtures or major MEP equipment just above or below the ceiling be shown on the sprinkler working plans. This seems easy enough to require for a consultant – but for a sprinkler contractor, pulling in this information can be a chore – especially if the sprinkler subcontractor doesn’t get a full set of CAD plans to begin with. Hopefully, with this being codified, a sprinkler contractor’s request for CAD backgrounds on this information gets a little easier to push back up the food chain. We know lights, diffusers, and other ceiling fixtures will be on a project. Now we're required to have them on sprinkler installation plans. #4 PLACARD INFORMATION Hydraulic Data Nameplate information has long been required to be shown on the working drawings, but now the hose demand, method of calculation, and total flow and pressure have been added to the list. This comes from the 2022 Edition, 28.1.3(23c). #5 OWNER’S CERTIFICATE INFORMATION NFPA 13 has long required that a signed Owner’s Certificate to be submitted with working drawings (1999 8-1.1.2, 2022 14.1.4, 2007-10 22.1.4, 2013-16 Section 23.1.4, 2019 Section 27.1.1.1(4), 2022 Section 28.1.4). Now, with the 2022 Edition, required information from the owner’s certificate is required to be shown on the plans [2022 28.1.3(14)]. This includes storage materials, storage heights, water supply information, and whether seismic bracing is required. This is discussed in more detail in 2022 Edition Section 4.2. The Owner's Information Certificate has been a requirement to be included with working drawings, but now the required information from it is also required to be shown on plans, starting with the 2022 Edition. #6 DESIGN CRITERIA FOR EACH SPACE The 2022 Edition clarifies that design criteria for each room or space be shown on the plans, including hazard classification everywhere, and commodity classification, storage type, configuration, height, and packaging for storage areas [2022 Section 28.1.3(15)]. That’s often critical yet hard-to-find information for plan review. This clarification puts some teeth to requiring that information be shown on plans. #7 FLEXIBLE DROP INFORMATION The 2022 Edition introduces requirements to indicate corresponding k-factor, length, manufacturer, maximum number of bends, minimum bend radius, and model for flexible drops when they’re used [2022 Section 28.1.3(17b)]. While many designers already indicated at least some of this, having the maximum number of bends and minimum bend radius on the plans could go a long way in helping on-site inspection make sure that the install actually adheres to the design intent. Not a terrible idea. #8 MORE SEISMIC DETAIL The 2022 Edition requires more detail on several seismic bracing components. These include design angle categories, flexible coupling locations, locations of seismic components, maximum spacing, penetration clearances, and zones of influence all to be shown on the plans [2022 Edition Section 28.1.3(22)]. IMPACT FOR PLAN REVIEWERS The “working drawing” revamp in the 2022 Edition shakes up an area of the code that hasn’t changed much in some time. For plan reviewers, this is a welcome relief. Many of the updates and additions are simply requiring pockets of information that a plan reviewer needs to know for proper review, but is really difficult to surmise if they’re outside of the design development process. Having teeth to require that commodities and storage arrangements and Obstructed & Unobstructed be identified on the plan will go a long way in checking due diligence has been done in key areas. IMPACT TO DESIGNERS For designers? This could be a tall ask. There’s some major adjustment here. For designers who traditionally have been very thorough in plan preparation and documenting each step of the process, this will be more of a matter of simply sharing some of that documentation. For designers that may not have gone into this level of depth – there’s certainly going to need to be more time dedicated to the process. More time to ask the owner for input. More time to ask for more complete backgrounds for coordination. More time to document, label, and identify details on plans. It’ll take more time. If designers already feel crunched by design time budgets, then it’ll be be an adjustment for everyone. IMPACT TO ESTIMATORS For estimators? When the 2022 Edition (or later) gets enforced, plan on designers needing some additional time to take this on. Time adds for design will be greatest for buildings with storage, seismic projects, or jurisdictions who provide thorough review. There’s plenty of teeth to the the updated list, so it’s less of a “well these things are technically supposed to be provided in the spec” and instead “NFPA 13 requires this to be shown.” Less room to maneuver, in other words. TAKEAWAYS Personally, I like these changes. They allow for clearer communication of intent, which is the point of drawings in the first place. It’ll allow designers to be more thorough in their process. While that might sound contradictory (why would a designer want to be pushed to be more thorough?), many good designers lament that the pace and expectation for flying through design is too fast. Having NFPA 13 be the backbone of what needs to be submitted gives designers a tangible justification to do a more thorough (better) job. The NFPA 13 requirements can play the part of the villian, not the designer who’s trying to do things at a depth that they feel is needed. Hope you enjoyed the recap here, and that you have a great rest of your week. Keep up the good work. - Joe Last week we updated the NFPA 13 shop drawing checklist with references to NFPA 13 2019 and 2022 Editions. While code updates like this are traditionally modest, the NFPA 13 Committee revamped the entire list of requirements for “working drawings” in the 2022 Edition. It was gutted. We’ll expand on that more next week. This week I’d like to key in on one very impactful change that I think will affect many of us in how we design systems going forward. FORWARD-FLOW REQUIREMENT HISTORY A forward-flow test has long been required in NFPA 25 (dating back to at least 2002). The purpose of the test is to verify that a backflow preventer is capable of fully-opening in a fire – or at least to the extent that it allows enough water to flow to satisfy the sprinkler system’s demand. A means of conducting a forward-flow test has long been required, but not necessarily readily implemented. For many lower-hazard systems, it was a test that was possible by flowing out of a fire department connection or main drain. WHY NOT FLOW OUT THE FDC? White it was possible to do a forward flow through an FDC, this approach was never practical. I can’t stand on a high horse here – it was the approach I long used from a design perspective. It’s not practical because conducting a forward-flow test out of an FDC would typically require a system to be shut off, drained, check valve reversed, put back into service, tested, shut off, drained, check valve put back into place, and put back into service. And that was if the clappers on the FDC were removed or restrained in a way to allow enough water to pass through. It’s a tall ask. USE THE MAIN DRAIN? Flowing out the main drain could be a solution for forward flow, but practically speaking how much water can flow through a 2-inch main drain, especially if there’s an OH1 or OH2 demand? Do we have a way to verify how much water we’re flowing, so that we know the test passed? Some have used our own calculator to estimate the amount of water flowing through a main drain by using this orifice flow calculator - https://www.meyerfire.com/blog/a-new-fire-sprinkler-test-drain-flow-calculator That calculation is based on pressure flowing through an opening – either an orifice or pipe diameter – and doesn’t incorporate the losses that occur through the length of a main drain or the fittings along the way. It’s going to be too generous on the amount of flow coming through a main drain – which is good if we’re wanting to know how much water a plumbing drain needs to accept – but bad if we’re trying to prove forward flow based on it. I would suspect that a supply-side calculation (where the available pressure dictates the flow) through a fully-open main drain would be the best way to predict hydraulically how much flow a main drain could flow. If that’s well above the system demand (including hose allowance), then a main drain could be the means to flow. But a 2-inch main drain is very likely not an answer for forward flow for most systems. I’ll leave that discussion open – perhaps there’s a tool we could construct to account for main drain losses and perform that supply-side calculation. PERMANENT MEANS FOR FORWARD-FLOW Somewhat fortunately for those of us who like black and white guidance (myself included) –the NFPA 13 committee closed up the gray area in the 2019 Edition by requiring that an arrangement for conducting the forward flow test, at the minimum flow rate of the system demand (including hose allowance), would be provided “without requiring the owner to modify the system to perform the test.” This comes from NFPA 13-2019 Section 16.14.5.1.1. In the 2022 Edition, the committee went further. A fixed means of forward flow, like hose valves on a test header or system riser, will become far more commonplace once the 2019 and 2022 Editions of NFPA 13 are adopted and enforced. A 2-1/2” HOSE CONNECTION FOR EVERY 250 GPM A test connection is now required for forward flow tests, where now a 2-1/2” hose valve is required for every 250 gpm (950 L/min) of system demand. This total flow must include the hose allowance where applicable. Generally, if there are interior hose valves, then this would need to get added in. So - an Ordinary Hazard Group I system that may have a demand of 270 gpm (with 250 gpm outside hose allowance), would still need two 2-1/2” hose valves for the forward flow test fixed in place downstream of the backflow preventer. For larger systems, or those with interior hose connections? We could be looking at three or more hose connections just for forward flow. This comes from NFPA 13-2022 Section 16.14.5.1.1. That’s a noteworthy change. For a code-minimum, sprinkler-system-only type of project, that’s a tangibly different cost and look to a part of the system. Does this have to be a test header on the outside of the building? Not necessarily, though that would be nice for future testing. Could the hose valves be on a riser in a room that has exterior access? Depending on the room and goals for the building – that could be reasonable. There are two provisional sections that allow existing hose connections to be used for the test (16.14.5.1.2), and other means to test are allowed “as long as the system doesn’t require modification to perform the test and is sized to meet the system demand.” The later comes from NFPA 13-2022 16.14.5.1.3. Is a fixed test-header on the exterior of the building required? No, but it could be convenient for future testing in areas where theft is less of a concern. HAVING TEETH
But in general – we don’t have a “use the FDC” workaround any longer. For those in IT&M, we finally have a sticking point to give an ability to do this test without tinkering with the system. For those in design, we finally have a magic section of code that we can show to justify providing a means of the forward flow test. For those in review and inspection, we have the teeth to enforce it. Hopefully, in the long-run, having systems tested for forward flow will identify backflow preventers aren’t functioning and we no longer have them in buildings ready to fail when a fire happens. Hopefully, this pushes buildings to a bit safer and helps us a be a little more confident in the system’s ability to fight a fire. SHOW ON WORKING DRAWINGS While the means is an installation question – NFPA 13-2022 Section 28.1.3(18) requires that working drawings locate and identify the means of forward flow. It’s no longer a “how do you plan to do this test?” type of comment and will soon be “show the location and label the means of forward flow, per 28.1.3(18).” MY FORWARD-FLOW STORY Are we really just testing the backflow preventer here? Well, yes. In part. But actually flowing an entire system demand tells us quite a bit. It means that our water supply is capable of flowing the full system demand, and all the pipe in-between the water supply and the backflow is also open-enough to flow the full system demand. I once had a project where a tap was made to the city supply main. It was a live tap or “hot tap,” where a drill punctured the side of the city main and a new 6” street valve was installed and our 6” underground came in and fed the building. It was a brand-new 3-story building that was going to have overnight guests. The tap wasn’t fully-made. In fact, as we found out later through a lot of cost and trouble, only a ¾” pilot drill bit made it through the city main. It wasn’t all the way drilled-in. Instead of a 6” tap, we had a ¾” tap. Static pressure to the building was fine. We could run a main drain test just fine (the residual dropped, but the main drain isn’t flowing all that much). Remember – the initial main drain test sets the threshold to check against in the future. We could flow the inspector’s test just fine. When we conducted the forward flow test and opened a couple 2-1/2” hoses – we had no water. No pressure at all. It wasn’t until we conducted the Forward Flow test that we knew there was a problem. Where it not for the Forward Flow test, we would have had a brand-new building, which, by all other measures we would have thought was designed and installed properly – all protected by a system with water that was squeezed through a ¾” hole. While the backstory of testing the Forward Flow may be more about the backflow preventer, the test does give us confidence in the supply up through the backflow preventer being able to handle the system demand. If we measure the flow coming from the forward flow, and also stick calibrated gauges on the upstream cock and downstream cock of the backflow – we can know a whole lot about the health of our system that day. What’s the static pressure? What’s the loss through the backflow? What’s the base of riser pressure at the system demand? How does that compare to our design? We can get a lot of information just from this one test. END SOAPBOX That’s my soapbox rant for today. As with all we write and do on this site, I hope you’ve found it helpful. Keep fighting the good fight, and have a great rest of your week. - Joe Have you had a project with an overhang that needed sprinkler protection and extended just beyond the throw of a dry sidewall sprinkler? It’s a smooth, flat or nearly-flat overhang that’s, say, 21’-6” wide, and in an environment that will dip below 40 degrees F at some point. What are your options then? OPTIONS All of the extended coverage dry sprinklers we know on the market cap out at 20’-0” horizontal throw. That would have been our best option. We could look at using a dry system. There’s the additional cost of the valve, slope requirements, a hit on the remote area size, more corrosion potential – and on and on. It’s costly. We could look at an anti-freeze system. Those come with more restrictions than they used to, but at a minimum would involve an RPZ and now pre-mixed antifreeze solution. Additional cost. Heat trace the pipe? That’s problematic, at best. It needs to function 100% of the time that it’s needed, or pipe will freeze. It needs to be supervised. It needs to be maintained. And when in conjunction with pipe insulation it looks terrible. In short, an overhang that’s just beyond the reach of a dry sidewall sprinkler can take us to a whole new cost tier in the design of a sprinkler system. CODE-COMPLIANT CREATIVITY We had just this situation on a project a few weeks ago, and tried to think creatively to get a code-compliant solution that’s best for the owner, yet doesn’t spike the cost for a dry sprinkler system that only serves four sprinklers. Now normally, sprinkler design tends to be a one way street. An architect designs a building. It gets bid and handed down to the sprinkler contractor. The sprinkler contractor “makes it work” with what they’ve been given. If a consultant is on-board, this would be a great opportunity to pick off challenges like this and advice the architect and owner on ways to mitigate this cost spike for a small project. Perhaps the overhang is designed at 19’-6” instead of 21’-6”. Perhaps they build it with all non-combustible materials if it otherwise didn’t have storage below. Those could be helpful changes that reduce the overall cost in a major way, but may not be a major detriment to the owner’s goals for the building. #1 SHORTEN THE OVERHANG Regardless, we suggested that the width of the overhang be actually shortened to allow a sidewall’s throw to cover the distance and prevent the need for a whole dry system. That didn’t go anywhere. #2 EXTEND THE REACH OF A DRY SIDEWALL We then asked if a soffit could be built to allow a sidewall it’s spacing of no more than 20’-0”. The soffit wouldn’t have to be heated. It could simply be framed (hopefully of non-combustible studs) with sheetrock or a “Hardie Board” or some other skin. It could be almost completely empty on the inside. The goal would be to give a dry sidewall sprinkler a back to collect heat and be installed properly. KEY RULES There’s a few notable rules that come into play here, though.
So working backwards, a soffit that is say, 2’-0” wide and 2’-0” tall would allow a dry sidewall sprinkler to:
But then, we need coverage below the soffit too, right? This could be accomplished with a flexible dry pendent, such as the V3517 dry flexible pendent sprinkler. Just like the dry sidewall, the flexible dry pendent could contain water back on the warm interior space. DIGGING DEEPER We also would want to offset these locations on plan, so a pendent isn’t immediately under a dry sidewall. Offsetting the locations in plan could help potential cold-soldering concerns. We’d also want to be sure that both the dry sidewall and the dry flex pendent would be able to be replaced at some point in the near future. NFPA 25 used to require sample testing or replacement every 10 years starting at 10 years after installation, but the 2020 edition bumped that starting point up to 15 years and the 2023 Edition bumped it again to 20 years after installation (NFPA 25 2017-20 Section 5.3.1.1.1.6, 2023 Section 5.3.1.1.1.5). To accommodate replacement and testing, we might need a way to get access to the inside and the soffit in the future (access panels or future cutout). COST & CONSEQUENCE After all this effort – will the soffit cost more? Sure. Would it cost as much as a dry or anti-freeze system? No, it shouldn’t. Does it help with corrosion and IT&M in the future, considering we wouldn’t have a dry valve and an additional nitrogen system or air compressor? Yes, that’d help too. Just an idea that might help address those “in-between” situations that could spike cost for a smaller-sized project that otherwise wouldn’t need it. What are your thoughts? Have you tried this before? What tips would you suggest? Hope you’ve found this interesting and perhaps moderately helpful, and I hope you have a great rest of your week! |
ALL-ACCESSSUBSCRIBEGet Free Articles via Email:
+ Get calculators, tools, resources and articles
+ Get our PDF Flowchart for Canopy & Overhang Requirements instantly + No spam
+ Unsubscribe anytime AUTHORJoe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About FILTERS
All
ARCHIVES
January 2025
|