MeyerFire
  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • ABOUT
    • CATALOG
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT
Picture

New Calculated Sprinkler Hanger Spacing Tool

11/27/2019

 
Occasionally I come across projects where the contractor (my client) is looking to use listed anchors or attachments that are listed, but have various strengths associated with them.

NFPA 13 lists the maximum spacing for hangers, but this maximum spacing doesn't always address these alternative hanging methods. NFPA 13 addresses these by requiring that any hanger assembly be able to support five times the weight of water filled pipe, plus 250 pounds.

Based on this, I've created a calculator that reverses this process and calculates the maximum spacing for hangers depending upon the pipe size, type, and strength of a hanging element. As this is the first week out I only have I-P units (sorry international friends, I'll continue to work on this), but let me know what you think in the comments section below. 
CHECK OUT THE HANGER SPACER
Picture

​Thanks and for those in the US have a great Thanksgiving week!

Why Are Dry-Pipe Sprinkler Systems So Difficult?

11/20/2019

 
“What’s the advantage of a wet-pipe fire sprinkler system over a dry-pipe fire sprinkler system?”

If you’ve been in the industry a long time you might scoff at the question, but I’ve been asked a couple times from different non-fire protection clients.

Grab a pen real quick. Identify all the reasons why we don’t do dry systems everywhere. Seriously – see how many you come up with.

If you only said cost – you hit the big one. Dry systems are more expensive than wet. But there’s more to it than that. A lot more.

Here’s my reasoning why dry-pipe systems are more challenging than wet systems. Compare it to your list and post your thoughts below in the comment section here.

1. Cost
The biggest driver (as is with much in construction) for wet over dry is the cost.
Cost is impacted by
- the inclusion of a dry valve,
- air compressor (or nitrogen generator)
- potentially different pipe types
- additional labor to design and install sloped pipe
- inclusion of a remote inspector’s test
- potentially additional low-point auxiliary drains with drum drips, and
- use of dry-pendent style sprinklers in unheated areas

2. System Configuration
With wet systems, we’re able to design tree, looped, or gridded sprinkler systems. Dry systems are limited to tree or looped systems (NFPA 13 2002 7.2.3.5, 2007-16 7.2.3.10, 2019 8.2.3.10).

Gridded systems specifically can be great for bringing down branch pipe sizes by distributing the flow across mains and gridded branches. With more pathways to flow, there’s less overall friction loss from supply to sprinkler.

Looped systems can benefit from a similar premise, but looped systems don’t benefit from flow down gridded branch lines. Looped systems with long branchlines can still have larger branch pipe diameters.

3. Slope
Dry systems must slope to a drainable location (NFPA 13 2002 8.15.2.3.1, 2007-16 8.16.2.3.1, 2019 16.10.3.1). All dry system pipe must be sloped. For large or complex areas, these slopes can add up over time and result in big differences in pipe elevation.

I worked on a pre-engineered metal building once which was several hundred feet long. We originally planned for a dry system due to a large exposed material storage overhang at the end of the building.

Picture
The three pipe slopes that appear in NFPA 13. Non-refrigerated mains require 1/4-inch per 10 feet slope, while branches and any refrigerated locations require 1/2-inch per 10 feet slope (NFPA 13 2002 8.15.2.3.1, 2007-16 8.16.2.3.1, 2019 16.10.3.1)
The slope on the main from one end of the building to the other resulted in a difference of about 8-inches in height. Even splitting the difference and sloping to a high-point in the middle of the building was too much height difference for the building. We were trying to stay tight to structure and above wide overhead doors. The pre-engineered building had such little elevation tolerance (it was intended to house commercial trucks) that the slope on the dry mains were causing issues.

Long story short – the slope of the pipe caused enough issues that the design of the building was shortened by six feet to accommodate dry sidewall sprinkler throws and not need a dry-pipe system. Keeping the entire system wet allowed level main runs and reduced overall cost to the project. It may be the only project I ever work on where the building size was adjusted to accommodate sprinklers, but it resulted in a much more cost-effective solution.

​See more about pipe slope in a prior article here.

4. Corrosion
Dry systems suffer accelerated corrosion compared to wet-pipe systems. Those who inspect or replace dry systems know that their expected lifetime can be as short as a few years to as long as about a decade.

Why do dry systems corrode faster than wet? They have more oxygen molecules introduced to the interior pipe network than wet systems do. A combination of water vapor (from originally filling the system, trapping water, or introducing moisture through air compressors) and oxygen will corrode the system.

Wet systems suffer the same, but in much smaller quantities. In wet systems oxygen is only introduced from trapped water when the system is drained and refilled, or within the fresh water to the system.

5. Pipe Types
Some specifiers differ in pipe specifications between wet and dry systems. Many do not, but some do. While galvanized pipe is no longer a standard for dry systems in the industry (and for good reason), dry systems may necessitate schedule 40 pipe to slow the progression of corrosion in the system.

Pipe wall thickness not only affects cost and time to install, but it affects hydraulics too.

6. Hydraulics
Speaking of hydraulics, dry systems require a 30% increase in the remote area (NFPA 13 2002-16 11.2.3.2.5, 2019 19.3.3.2.5). The system essentially must accommodate a larger fire because a fire has the ability to be larger in size before the sprinkler system can introduce water. This 30% increase in the remote area results in significantly more water and often larger main size than a similarly designed wet system.

Additionally, NFPA 13 requires that dry-pipe systems use a Hazen Williams C-Factor of 100 in lieu of 120. While this may change in future editions of NFPA 13 when paired with nitrogen inertion (as UFC criteria has), it’s still currently only 100 (NFPA 13 2013 Table 23.4.4.7.1, 2016 23.4.4.8.1, 2019 27.2.4.8.1) for black steel. This higher friction loss can also result in larger pipe sizes.

7. Dry Pendents
Not all sprinkler types are allowed to be used in dry systems. If a pendent sprinkler is located in an area where the return bend is not kept above 40-degrees, then it must be a dry pendent (NFPA 13 2002-16 7.2.2, 2019 8.2.2).

Dry pendent sprinklers are significantly more expensive than a traditional pendent sprinkler, and introduce other manufacturer requirements (minimum shaft length, insertion into tees and not elbows).

8. Remote Inspector’s Tests & Drum Drips
Wet systems can locate inspector’s tests (included to show water flow and test the waterflow switch) just past the flow switch as a riser.

Dry systems, however, require that an inspector’s test be located at the most remote point of the system (NFPA 13 2002 8.16.4.3, 2007-13 8.17.4.3, 2016 8.17.4.2, 2019 16.14.2). This accessible valve at the most remote portion requires more pipe & coordination than a test at the riser often does.
Picture
Remote Inspector's Test (and drain shown here) come with an assortment of requirements. See a full detailing and breakout of the Inspector's Test here.
Summary
We use dry systems when we need to accommodate temperatures less than 40-degrees (F). Much of the time there isn’t a choice between a wet and dry system.

Some applications, though, could go either way. Early in design is often a great time to discuss heating options for spaces throughout a building. While the difference between 30 and 50 degree setpoints may not have major ramifications mechanically, it can have a major impact on the design of the suppression system.

Your Thoughts
​
What impacts have affected your projects the most? Comment below here.

If you've found this helpful, consider subscribing here and sharing with a colleague. Thanks & have a great week!

Can I Omit Sprinkler Protection in Server Rooms?

11/13/2019

 
In my regular code calls I used to include a specific question on the use of clean agent systems in server rooms.

Building Owners & Sprinklers 
Many building owners provide clean agent systems to extinguish fires in high-value content areas, such as server rooms, data centers, archival storage, and many other applications.

When the owners voluntarily pony-up for extra protection in these areas, they often ask whether sprinklers have to be installed in those spaces at all.

My Code Call Question
On my code calls, my question would go something like: “does your jurisdiction require sprinklers to be installed in rooms which are protected by a clean agent system?”

I would get a mixed response. Some jurisdictions considered clean agent systems to be an equivalent for sprinkler protection, others would not.

A couple years after asking this question on every applicable project I had a fire marshal shoot me straight.

“If you don’t have sprinklers in the room, you don’t have a fully-sprinklered building. Check the IBC.”

This was news to me. I was under the impression that use of clean agent systems could be used as a substitute for fire sprinklers and still be effectively “fully-sprinklered”.

Back to the Book
There is a path for this approach – the International Building Code (2018) Section 904.2 states that:

“Automatic fire-extinguishing systems (ie: clean agent) installed as an alternative to the required automatic sprinkler systems of Section 903 shall be approved by the fire code official.”

This was the foundation on which I had been asking the question.

The big kicker was the code section just a paragraph later:

“904.2.1 Restriction on using automatic sprinkler system exceptions or reductions. Automatic fire-extinguishing systems shall not be considered alternatives for the purposes of exceptions or reductions allowed for automatic sprinkler systems or by other requirements of this code.”

Outside of the lawyer-phrasing, this section simply states “no sprinklers in the room – no sprinkler reductions or exceptions for your building.”

The commentary by the International Code Council goes further, stating that while the authority has the ability to approve alternative systems in lieu of sprinklers, doing so invalidates the “fully-sprinklered” status of a building.

Why Does this Matter?
Why is this important? There is a long list of code kickbacks that sprinklers offer a building.

A couple months ago I diagramed a cheatsheet for all of the major code benefits a “fully-sprinklered” NFPA 13 fire sprinkler system offers. You can download it free here.
 
Code benefits include allowable building heights, building areas, number of stories, egress benefits, passive rating reductions, Draftstopping reductions, fire alarm reductions, and a handful of other benefits.

I realized after that code call that the question affected well more than just my isolated “fire sprinkler” silo. Omitting sprinklers in just one server room would have code implications throughout the complex.

Now, should building owners ask about omitting in these rooms we often look at other strategies – such as concealed sidewall sprinklers, use of dry sprinklers, drip pans, use of pre-action systems, or piping without joints and heavy-duty cages. Some of these solutions can be painless, without great cost and satisfy code as well.

Want more like this? Subscribe to the blog here.

Already subscribed? Send to a friend. Thanks for reading!

A New Fire Sprinkler Test & Drain Flow Calculator

11/6/2019

 
I was asked recently for a specific project how much flow the owner should anticipate coming from a building's main drain. 

There's just a few factors that play into exactly how much water to expect. Is the drain serving as the main drain for a system? Is it only serving an inspector's test? Is the drain off a 1-inch pipe, or 2-inch? How much pressure is on the system?

These aren't often difficult to answer if you're familiar with the job, but each of these answers plays a role in determining how much water will come out of an open orifice.

This week I've simplified a few of these parameters to come up with a quick inspector's test and drain calculator for fire sprinkler systems.

With it, you can estimate the amount of flow that will come from an inspector's test (use the k-factor option) or from a drain (diameter option). For our international audience I have incorporated real units from the get-go this time. It's a free tool that's now live on the site, here.

Give it a spin and let me know what you think in the comments here. 
​

Know others that might find this helpful? Send them a link or tell them to subscribe here. 

Thanks & have a great week!
    Picture
    Why Sponsor?

    ALL-ACCESS

    Picture
    GET THE TOOLKIT

    SUBSCRIBE

    Get Free Articles via Email:
    + Get calculators, tools, resources and articles
    + Get our PDF Flowchart for Canopy & Overhang Requirements instantly
    Picture
    + No spam
    ​+ Unsubscribe anytime
    I'm Interested In:

    AUTHOR

    Joe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About


    FILTERS

    All
    Announcements
    Book Review
    Calculators
    Career
    Course
    Design Challenge
    Fire Alarm
    Fire Events
    Fire Suppression
    Flammable & Combustible Liquids
    Flexible Drops
    Floor Control Valve
    Life Safety
    News
    NICET
    Passive Fire Protection
    PE Exam
    Products
    Site Updates
    Special Hazards
    Sprinkler Systems
    Standpipes
    Tools
    Videos


    ARCHIVES

    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017
    September 2016
    August 2016
    July 2016
    June 2016
    July 2015
    June 2015
    May 2015

    RSS Feed

Picture
​Home
Our Cause
The Blog
The Forum
PE Exam Prep
The Toolkit

MeyerFire University
​Pricing
Login
​Support
Contact Us
Picture

MeyerFire.com is a startup community built to help fire protection professionals shine.
Our goal is to improve fire protection practices worldwide. We promote the industry by creating helpful tools and resources, and by bringing together industry professionals to share their expertise.

​MeyerFire, LLC is an International Code Council Preferred Education Provider.

All text, images, and media ​Copyright © 2023 MeyerFire, LLC

We respect your privacy and personal data. See our Privacy Policy and Terms of Service. 
The views, opinions, and information found on this site represent solely the author and do not represent the opinions of any other party, nor does the presented material assume responsibility for its use. Fire protection and life safety systems constitute a critical component for public health and safety and you should consult with a licensed professional for proper design and code adherence.

Discussions are solely for the purpose of peer review and the exchange of ideas. All comments are reviewed. Comments which do not contribute, are not relevant, are spam, or are disrespectful in nature may be removed. Information presented and opinions expressed should not be relied upon as a replacement for consulting services. Some (not all) outbound links on this website, such as Amazon links, are affiliate-based where we receive a small commission for orders placed elsewhere.

  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • ABOUT
    • CATALOG
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT