MeyerFire
  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • About
    • Catalog
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT
Picture

The Other (Easy) Way to Space a Smoke Detector

8/29/2017

 
While smoke detectors often have recommended spacing of 30 feet (identified in manufacturer's product data), spacing 30-feet on center is not the only way to space smoke detectors. NFPA 72 offers two methods for spacing smoke detectors on smooth ceilings:

Traditional Approach
The first method is simply to provide detectors at their listed spacing (often 30 feet), center-to-center, and within half the distance (which is 15 feet) to walls. [NFPA 72 2002 5.7.3.2.3(A-B), 2007 5.7.3.2.3.1-.2, or 2010-2016 17.6.3.1.1(1)]

Second Method
The second, often lesser-known method, is to provide smoke detectors such that all points on the ceiling are within a distance of 0.7 times the listed spacing, or less [NFPA 72 2002 Section 5.7.3.2.3(E), 2007 5.7.3.2.3.5, or 2010-2016 17.6.3.1.1(2)].

Smoke Detector Spacing

Applying the Method
In practice, this simply results in drawing a 21 foot circle (0.7 x 30-foot spacing = 21 feet) around each detector and making sure that every point on the ceiling is covered. On site, it would simply result in making sure every spot on the ceiling is within 21 feet of a smoke detector.

This second method becomes important for complex room configurations, long and narrow corridors, or as a way to simply provide smoke detectors at their most efficient coverage.

Fire Alarm Smoke Detector Spacing

A corridor which is 100-feet long and 10-feet wide, for instance, would require 4 smoke detectors under their listed spacing (30-feet spacing on center and 15-feet to the corridor ends). Using the second spacing method allowed by NFPA 72, these smoke detectors can be spaced nearly 41 feet center-to-center, requiring only 3 smoke detectors to be used.

Smoke Detector Spacing Methods

Using the Second Method
Fundamentally, the theory is that smoke production will fill a ceiling based on the area of the ceiling. For a long, narrow corridor, smoke will be limited in it's spread in the narrow dimension, forcing travel down the corridor. As a result, smoke detector response time is dependent upon the amount of area the detector covers, not necessarily the spacing between detectors.

​Matching smoke detector layouts to the nature of smoke transport and this code allowance could result in a simpler approach and often the need for less smoke detectors overall.

Not subscribed to get posts like this? Subscribe here for our free Weekly Posts.

Studying for NICET? Here's a List of Resources

8/23/2017

 
NICET Exam
Ever since creating the PE Tools and CFPS Tools list, we've been questioned about building a similar list of all resources for the NICET fire protection exams. We're happy to announce that our NICET Tools page is now live!
NICET Tools
NICET (National Institute for Certification in Engineering Technologies) has long been a high mark for technicians in the fire protection field. There are five different exams that pertain to fire protection, specifically Fire Alarm Systems, Inspection & Testing of Fire Alarm Systems, Inspection & Testing of Water-Based Systems, Water-Based Systems Layout, and Special Hazard Systems.

New Free Resource: Daily Discussion Questions

8/17/2017

 
Picture
We are very excited to announce that we are launching new platform for Daily Discussion!

Starting Monday of next week, we will anonymously post open ended-questions that you submit. The technical questions will be distributed to our active community just as the PE Problems are now, and anyone willing to share their expertise will be invited to partake in the discussion. Our hope is that over time we provide opportunities for experts around the country and around the world to weigh in on and learn from the active discussions surrounding the daily questions.

We've kicked around various forms of the concept ever since we debuted the daily PE Problems a few years ago, but the interest and feedback gathered since we started has encouraged us to find ways to bring new content and better engage with the sharp, engaging audience that we hear from regularly. 

Ready to submit a question? They can be anything in fire protection, from fire alarm to sprinkler, life safety to passive fire protection, theory to application. All questions are published anonymously:

Submit a Question
Do you follow our Blog, but not the daily questions? You can update your subscription to include both our Weekly Blog posts as well as our Daily Questions here:
Subscribe
Know a colleague who might benefit or be interested in this? Recommend us to a friend.

Triangle: The Fire that Changed America (Review)

8/9/2017

 
Triangle: The Fire That Changed America
It was a Saturday at closing time on March 25, 1911 in the heart of New York City. Young women (mostly immigrants) and some men were preparing to begin their single day off (a result of recent major labor reform) when a fire broke on the 8th floor of the Asch Building in Manhattan, endangering many and ending as the greatest workplace disaster in the US for the following 90 years.

David Von Drehle's 2003 non-fiction account of the Triangle Waistcoat Factory fire offers a thorough investigation of the social struggle for labor rights and a deep depiction of the era in which the awful event occurred. 

The book focuses on the major labor disputes at the time, recognizing early beginnings of "sweat shops" (named for owners who would 'sweat' or cut pay for employees after they complete work and had earlier agreed to higher wages). Large immigrant influxes composed the early manufacturing labor in often cramped, poor conditions with 7-day weeks and long working hours. 

The focus then shifts to the fire itself, detailing the development from a likely discarded cigarette to rapid growth from heaps of discarded textiles which ended up taking 146 lives. Locked exits (which were intended to funnel exiting and prevent theft), inadequately planned and installed fire escape, no sprinklers, ladder trucks which couldn't reach the height of the building, and severe lack of drills and warning about the fire all contributed to the disaster.

After the fire the book focuses on the trials of the owners, a Factory Investigation Commission, and the social reform for workplace condition improvement brought about by the labor unions formed in that era. Following the fire and recommendations for the independent commission, New York State legislature passed thirty-eight new laws regulating labor, wages, and safety, including mandates for exit door locking and swing direction, fire escape construction and design, egress access, and installations for alarm and sprinkler systems. Many states followed suit thereafter.

The book is a vivid account of the era, although it spends much more time in social injustice and labor reform than on the fire event and consequences of the fire than a fire protection professional may prefer.

​Have you read it?

p.s. If you're interested in reading along with us, our next book is Chicago Death Trap by Nat Brandt, an account on the Iroquois Theater Fire of 1903. We'll review that volume on September 27th.

Don't Let the Slope Fool You

8/2/2017

 
A 3-in-12 pitch to a ceiling or overhang might not appear that dramatic, but I came across a reminder again this past week as to the importance of paying attention to ceiling and overhang slopes. 

We had a project with a corridor that had a high roof where routing pendents would be impractical. The slope of the corridor was 3 in 12 (3 inches vertical for every 12 inches horizontal), and so we evaluated use of sidewall sprinklers to protect the corridor.

Here's where there's three important points to remember came into play that offered a good refresher for us:

Sidewall sprinklers are required to have the deflector aligned parallel to ceiling or roof slopes (NFPA 13 2002-2016 Editions Section 8.7.4.2), and, where the slope exceeds 2 in 12 the sprinkler must be located at the high ​point of the slope and be positioned downward (NFPA 13 2002-2016 Editions Section 8.7.4.2.2). Additionally, as with all slopes, the sprinkler coverage is measured along-the-slope, not in floor area (NFPA 13 2002-2016 Editions Section 8.7.3.1.2). 
Fire Sprinkler Sloped Ceilings
Those can be easy-to-miss rules and I probably didn't pick up on them for longer than it should have taken when I first started designing fire sprinkler systems.

Other considerations that often pop up in these scenarios include:
(1) Use of extended coverage sprinklers may have specific limitations on how dramatic of a slope they can handle,
(2) Sidewall sprinklers must be listed for use when they are lower than 6 inches down from the ceiling or roof (NFPA 13 2002-2016 Editions Section 8.7.4.1.1.2). This listing often involves different required pressure and coverage. Reference the product data sheets to be sure installations match their listings.
​(3) Sidewall sprinklers can't be located more than 6 inches from the wall on which they are mounted (NFPA 13 2002-2016 Editions Section 8.7.4.1.2.2)

What issues do you look for with sloped ceilings? Post in the comment section below.

Want to see more like this? Subscribe to our Weekly Blog.
    Picture
    Why Sponsor?

    ALL-ACCESS

    Picture
    GET THE TOOLKIT

    SUBSCRIBE

    Get Free Articles via Email:
    + Get calculators, tools, resources and articles
    + Get our PDF Flowchart for Canopy & Overhang Requirements instantly
    Picture
    + No spam
    ​+ Unsubscribe anytime
    I'm Interested In:

    AUTHOR

    Joe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About


    FILTERS

    All
    Announcements
    Book Review
    Calculators
    Career
    Course
    Design Challenge
    Fire Alarm
    Fire Events
    Fire Suppression
    Flammable & Combustible Liquids
    Flexible Drops
    Floor Control Valve
    Life Safety
    News
    NICET
    Passive Fire Protection
    PE Exam
    Products
    Site Updates
    Special Hazards
    Sprinkler Systems
    Standpipes
    Tools
    Videos


    ARCHIVES

    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017
    September 2016
    August 2016
    July 2016
    June 2016
    July 2015
    June 2015
    May 2015

    RSS Feed

Picture
​Home
Our Cause
The Blog
The Forum
PE Exam Prep
The Toolkit

MeyerFire University
​Pricing
Login
​Support
Contact Us
Picture

MeyerFire.com is a startup community built to help fire protection professionals shine.
Our goal is to improve fire protection practices worldwide. We promote the industry by creating helpful tools and resources, and by bringing together industry professionals to share their expertise.

​MeyerFire, LLC is an International Code Council Preferred Education Provider.

All text, images, and media ​Copyright © 2022 MeyerFire, LLC

We respect your privacy and personal data. See our Privacy Policy and Terms of Service. 
The views, opinions, and information found on this site represent solely the author and do not represent the opinions of any other party, nor does the presented material assume responsibility for its use. Fire protection and life safety systems constitute a critical component for public health and safety and you should consult with a licensed professional for proper design and code adherence.

Discussions are solely for the purpose of peer review and the exchange of ideas. All comments are reviewed. Comments which do not contribute, are not relevant, are spam, or are disrespectful in nature may be removed. Information presented and opinions expressed should not be relied upon as a replacement for consulting services. Some (not all) outbound links on this website, such as Amazon links, are affiliate-based where we receive a small commission for orders placed elsewhere.

  • Blog
  • Forum
  • THE TOOLKIT
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR*
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND*
    • FIRE FLOW CALCULATOR*
    • FIRE PUMP ANALYZER*
    • FIRE PUMP DATABASE*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER*
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR*
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'22)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • QUICK RESPONSE AREA REDUCTION
    • REMOTE AREA ANALYZER*
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • SYSTEM ESTIMATOR*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER STORAGE*
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • UNIVERSITY
    • About
    • Catalog
    • CONTENT LIBRARY
  • PE Exam
    • PE Forum & Errata
    • PE Store
    • PE Tools
    • PE Prep Series
    • PE 100-Day Marathon
  • LOGIN
  • PRICING
    • SOFTWARE & TRAINING
    • STORE
  • THE CAUSE
    • ABOUT US
    • BECOME AN INSTRUCTOR
    • HELP/SUPPORT