MeyerFire
  • Blog
  • Daily
  • Exam Prep
    • CFPS Tools
    • NICET Tools
    • PE Forum & Errata
    • PE Problems
    • PE Store
    • PE Tools
    • PE Prep Series
  • TOOLS
    • TOOLKIT (FREE TRIAL)
    • *TOOLKIT (PURCHASE)
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND
    • FIRE PUMP ANALYZER
    • FIRE PUMP DATABASE*
    • FIRE FLOW CALCULATOR*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'19)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • REMOTE AREA ANALYZER
    • QUICK RESPONSE AREA REDUCTION
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • CODE CALLS
  • LOGIN
  • STORE
  • About
Picture
WEEKLY TAKEAWAYS AS A FIRE PROTECTION ENGINEER

An Overview of Fire Sprinkler Threaded Fittings

8/28/2018

 
In hindsight it seems silly that early as a designer I didn't take time to understand some of the basic nuances and differences in pipe fittings.

Performance Spec Beginnings
Like a good handful of engineers in the industry, I began early in my design days doing bid/performance specification work - outlining big picture issues and project nuances - while leaving the system layout and detailing to the fire sprinkler contractor. It lends itself to understanding code surprisingly well, but lacks the hands-on experience to understand how systems are actually built.

Understanding Each Component
Why is understanding the fitting components important? When I started laying systems out there's some natural rules that develop due to availability of the materials. If you want a basic, labor efficient, and cost-effective system, then it's imperative to understand what materials are commonly available and cost effective - and materials are considered "special order" (ie: expensive and longer lead-times).

After doing shop drawing/fabrication design, finding ways to create clean designs with commonly available components is a very important part of the design process.

Overview of Components
In today's article I'm covering the basic, traditional threaded pipe fittings.
Fire Sprinkler Threaded Elbow Tee
Elbows
Likely the most familiar component - an elbow has two openings traditionally 90-degrees apart, with female threads on both ends. Elbows can vary in angles - while the most common are 90-degree and 45-degree, cast-iron fittings also offer a 22-1/2 degree threaded elbow.

Long-Turns
The 'turn' on the elbow also can vary, particularly with cast-iron elbows. "Long-turn" elbows have a larger radius and make a more gradual curve, which could have hydraulic benefits should the application justify it.

Street Elbows
"Street Elbows", typically available as a malleable-iron fitting, is an elbow with a female thread on one side and a male thread on the other. They can be particularly helpful when an elbow is needed to come directly off a welded branch line without a riser nipple in-between the branch pipe and the elbow. I don't know where "street" elbows get their name, but I like to think it comes from a dark and cloudy past of use in 1920's style gangster street battles.

Reducing Elbows & Tees
Elbows, like tees, come in reducing styles, where one opening is simply a different (reduced) size from the original opening. This is a very helpful and friendly feature with threaded fittings, as there are many different reducing elbow and reducing tee sizes that makes their use with branch lines easy.
Threaded Reducing Tee
Identifying Reducing Fittings
​
To label the size of a reducing tee or elbow, there's a specific order to the different openings.

A 1 x 1/2 reducing elbow, for instance, emphasizes that the primary opening is 1-inch and the smaller opening is 1/2-inch. While this terminology doesn't matter much for a traditional elbow that can be quickly spun around, it's more important for reducing street elbows and certainly for tees.

Reducing tees are labeled by their primary opening (opening A, above), then the opposite side (B, above), and then the last outlet in-between and perpendicular to the first two (opening C, above). If a branch line goes from 1-1/4" in diameter, to a 1" pipe, while serving a 1/2" threaded sprinkler at the intersection, then this reducing tee would be a 1-1/4" x 1" x 1/2" (A x B x C).
Threaded Cross
​Crosses
Crosses can be helpful when sprinklers split on either side of a continuous branch line. Crosses also offer a good reminder that just because a cross exists, doesn't mean it exists in the wide variety of combinations that could possibly be necessary.

Ductile iron crosses, for instance, are commonly in three sizes 2 x 2 x 1 x 1, 1-1/2 x 1-1/2 x 1 x 1, and 1-1/4 x 1-1/4 x 1 x 1. Cast iron are generally available in a wider variety, even offering sides C and D below in different sizes. It's important to caution, however, that just being available doesn't mean an item is commonly available as 'off the shelf'. 
Fire Sprinkler Reducing Cross
Identifying Crosses 
The naming convention for crosses is the primary side (largest, A above) x opposite side (B, above) x adjacent north side (C, above) x remaining south side (D, above). A cross that connects a 2-inch branch pipe to a 1-1/2-inch branch pipe while also splitting out to serve two 1" armovers would be a 2 x 1-1/2 x 1 x 1 fitting.

Riser Nipples to Avoid Crosses
One trick to avoid semi-custom crosses entirely is to consider using two tees at the intersection. Running a riser nipple from one line to another slightly above it can make use of more common reducing tees and give the designer some flexibility that crosses don't always offer. 

Order of Threading
One other item to consider with crosses is the order of threading. It's important not just to select fittings that functionally work for a design, but that can physically be threaded in a sequence that can actually be accomplished in the field. 
Fire Sprinkler Threaded Coupling
Unions
One classic situation fitters understand all too well that designers don't is the order of threading. Without a union, you can't have two risers connect into the same main drain with threaded fittings. Likewise, without a union, a gridded system can't only use threaded connections.

Why? It's all about the order of installation. Threads can only be accomplished in one circular direction (righty-tighty, lefty-loosey, right?). Because of this, threading one end will lock in pipe without the ability to then rotate the pipe on the other end. 

Now introducing the union. Sent by the pipe gods, the union has a female threaded connection on both ends with a swivel disc (for lack of a better term) in-between, that allows rotation between the two female inlets. This swivel ability allows threading to occur on either side of the union without the opposite side needing to turn. As cited in the above examples, unions are used to make closed connected systems threadable.

Couplings
The more basic counterpart to the union, the coupling connects two male segments by way of two female inlets. 

If you ever get this mixed up and happen to order unions instead of couplings - don't worry - you'll get a call from someone in the field who will be 'happy' to straighten things out. At least that was the case for me the first and last time I accidentally swapped the two.

Reducing Couplings
Also known as 'reducers' and 'bell reducers', reducing couplings connect two male threaded segments off different sizes. In the sprinkler industry these are far and away the most popular fitting used to connect a sprinkler to a sprig, drop, or armover.

The actual styles and look can vary, but in basic premise there's two different sized inlets with a hex or another flanged point to attach a wrench and turn the coupling relative to a pipe or sprinkler.
Fire Sprinkler Fittings
Bushings
Less common in steel systems than in CPVC systems (where there's many less fitting options), bushings are similar to reducing couplings except that one side is male and the other is female. 

One applications I've come across that's made good use of bushings is in a new installation installing upright sprinklers were a future ceiling will be provided. Since a minimum 1-inch outlet is required for sprinklers below a ceiling (NFPA 13-2106 8.15.20.1), the 1-inch outlet can be provided but installed with a bushing that can screw directly into the 1-inch outlet and still accommodate the 1/2-inch thread of a standard upright sprinkler.

Plug & Cap
One of the concepts that prompted this article was a discussion my wife and I had about the differences between plugs and caps (yes, I do think about this stuff all the time). In short, plugs have a male connection while caps have a female. They both generally serve the same purpose - to stop the flow of anything in the pipe network.

I don't come across caps in threaded systems much, primarily because of the availability of reducing fittings that size each component to its need. Caps are common for temporary drops in ceilings to close up a system while waiting for ceilings to be installed. Caps are also used when a branch pipe needs to be extended beyond the last sprinkler to catch a hanger.

Plugs are used quite a bit - at remote auxiliary drains that aren't piped to a discharge location, for three-way valves serving water gauges, or on tees connected to dry sprinklers.

Spread the Word
We're all about helping you excel in fire protection. If you've found this helpful, please share with someone who you think could benefit. Thank you in advance!

If you're not already receiving these weekly articles, you can sign up for free here:
FOLLOW THE CAUSE
steele honda link
4/17/2019 05:38:14 pm

I like that you pointed out that after doing shop drawing/fabrication design, finding ways to create clean designs with commonly available components is a very important part of the design process for engineers. I think that it would be smart to have the right pipe fittings for you designs so that you could know that your design would work correctly. Thanks for the overview of sprinkler threaded fittings and pipe fittings.

Rakesh
12/8/2019 07:50:54 pm

All fitting Rate


Comments are closed.
    Picture
    Why Sponsor?

    Subscribe

    Get Free Articles via Email:
    + Get calculators, tools, resources and articles
    + Get our PDF Flowchart for Canopy & Overhang Requirements instantly
    Picture
    + No spam
    ​+ Unsubscribe anytime
    I'm Interested In:

    The Toolkit

    Get access to every tool, the downloadable Toolkit, Sprinkler Database, Calculators and more:
    Picture
    Picture
    See all the details here.
    FREE 30-DAY TRIAL
    GET THE TOOLKIT

    Author

    Joseph Meyer, PE, owns/operates his own Fire Protection Engineering practice in St. Louis, Missouri. See bio on About page.

    Categories

    All
    Announcements
    Book Review
    Calculators
    Career
    Course
    Design Challenge
    Fire Alarm
    Fire Events
    Fire Suppression
    Flammable & Combustible Liquids
    Flexible Drops
    Floor Control Valve
    Life Safety
    News
    NICET
    Passive Fire Protection
    PE Exam
    Products
    Site Updates
    Special Hazards
    Sprinkler Systems
    Standpipes
    Tools

    Archives

    December 2020
    November 2020
    October 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017
    September 2016
    August 2016
    July 2016
    June 2016
    July 2015
    June 2015
    May 2015

    RSS Feed

Home - About - Blog - Contact - Exam Prep - Store
Picture
Copyright © 2020 MeyerFire, LLC
The views, opinions, and information found on this site represent solely the author shown and do not represent the opinions of any other party, nor does the presented material assume responsibility for its use. Fire protection and life safety systems constitute a critical component for public health and safety and you should consult with a licensed professional for proper design and code adherence. Some (not all) outbound links on this website, such as Amazon links, are affiliate-based where we receive a commission for orders placed elsewhere.
  • Blog
  • Daily
  • Exam Prep
    • CFPS Tools
    • NICET Tools
    • PE Forum & Errata
    • PE Problems
    • PE Store
    • PE Tools
    • PE Prep Series
  • TOOLS
    • TOOLKIT (FREE TRIAL)
    • *TOOLKIT (PURCHASE)
    • SUBMIT AN IDEA
    • BACKFLOW DATABASE*
    • CLEAN AGENT ESTIMATOR
    • CLOUD CEILING CALCULATOR
    • DOMESTIC DEMAND
    • FIRE PUMP ANALYZER
    • FIRE PUMP DATABASE*
    • FIRE FLOW CALCULATOR*
    • FRICTION LOSS CALCULATOR
    • HANGER SPACER
    • IBC TRANSLATOR*
    • K-FACTOR SELECTOR
    • NFPA 13 EDITION TRANSLATOR ('19 ONLY)
    • NFPA 13 EDITION TRANSLATOR ('99-'19)*
    • LIQUIDS ANALYZER*
    • OBSTRUCTION CALCULATOR
    • OBSTRUCTIONS AGAINST WALL*
    • PLUMBING FIXTURE COUNTS
    • REMOTE AREA ANALYZER
    • QUICK RESPONSE AREA REDUCTION
    • SPRINKLER DATABASE*
    • SPRINKLER FLOW*
    • TEST & DRAIN CALCULATOR
    • THRUST BLOCK CALCULATOR
    • TRAPEZE CALCULATOR
    • UNIT CONVERTER
    • VOLUME & COMPRESSOR CALCULATOR
    • WATER SUPPLY (US)
    • WATER SUPPLY (METRIC)
  • CODE CALLS
  • LOGIN
  • STORE
  • About