This week I'm happy to debut an update to one of our popular tools, the K-Factor selector, which is a part of the Toolkit. This tool quickly calculates the actual pressure and flow across different types of sprinklers. It's helpful when we're trying to select the best-possible sprinkler for a hazard. Even for light hazard areas, a standard k5.6 sprinkler may not be the 'optimal' sprinkler, from a hydraulic perspective. We touched on this when looking at whether the flow through a sprinkler is governed by the density and area or by the k-factor and minimum pressure. In short, the minimum flow through a sprinkler can be driven by the coverage area of the sprinkler multiplied by the density of the hazard, or, it can be driven by the k-factor of the sprinkler and the minimum pressure that sprinkler requires. In either case, it's important to make a quality selection for the k-factor if we want to reduce the required pressure and flow that a system will demand. Less flow usually means less friction loss, which can result in more efficient systems and smaller pipe sizes (saved cost of material and labor).
The updates to this tool make it mobile and tablet friendly, and also now clearly indicate what the 'optimal' sprinkler k-factor is for flow and for pressure (hint: they're not always the same). If you're a Toolkit user, just click the image above to see the updates. Thanks! Last week we debuted a remote area cheatsheet detailing some tips for quick-response reduction, slope adjustments, and dry, double-interlock pre-action and storage area adjustments. We're all about bringing fire protection pros around the world together (globally), and so today I'm happy to also add a metric version of this same cheatsheet. We plan do to updates like this with our content going forward. To download, just click below. If you're a University user, you can get all of our latest cheatsheets, checklists and summaries under your University Dashboard. Thanks & have a great week! This Remote Area cheatsheet allows for quick adjustments to the remote area and minimum remote-area widths when conducting or reviewing fire sprinkler hydraulic calculations.
It's been too long since our last cheatsheet! Happy to bring about a new one to the table today. One number that I seem to always need to crunch when laying out or reviewing fire sprinkler systems is the remote area adjustments, and the minimum width of a remote area. This applies specifically to the Density/Area method of Hydraulic Calculations in NFPA 13. The formula is simple enough, w = 1.2 x sqrt(remote area size), where w is the minimum remote area width, and the remote area size is our final adjusted remote area that we're using. Now for a routine calculation with a remote area of 1,500 sqft, I pretty much have the 46.5-foot area width memorized. Why is it important? The minimum width dimension tells us how wide our remote area needs to be. It's the dimension parallel to the branch lines, that captures as many sprinklers as it can along the branch line. We take this minimum area, see how many sprinklers this area covers, and round up to the next whole sprinkler. It's our minimum width dimension that we're not allowed to reduce. The 46.5-foot dimension might be easy enough to remember, but what about when a remote area is reduced using the quick-response reduction? What if the ceiling is also sloped? Adjustments to the remote area are a process on their own, and each have implications for the minimum remote area width. If you're using our Toolkit you already know we have tools that will compound the calculations for you. Our Quick-Response Reduction tool will adjust the remote area size based on the ceiling height, and our System Estimator tool will adjust for quick-response, sloped ceilings, dry and pre-action systems, high-temperature sprinklers, and more: But, there are still times where I just want to quickly glance at my remote area size and translate that into a minimum width. That's what today's cheatsheet is all about. This quick reference PDF helps address a few things:
I hope this one is helpful for you as conduct or review hydraulic calculations on your projects. Any tips, feedback or improvement ideas, be sure to let me know.
Thanks & have a great rest of your week! We've had an extremely busy fall thus far. We had a soft-rollout of the MeyerFire University platform, which has had very positive feedback and is already over 100 users strong (just a few weeks in)! If you're interested in learning more, email me at [email protected] and I'd be happy to share more detail or set up a quick demo for your team. UPDATED NFPA 13R/13D CODE IMPACT CHEETSHEET A couple of years ago I wrote a couple pieces on when NFPA 13R can be used, and I put together a cheatsheet on the code impacts associated with using NFPA 13R and 13D. I'm happy to say that we've now updated the cheatsheet with impacts from the 2021 Edition of the IBC. While it may not yet be the adopted building code for your area, it's still important to compare code impacts with the latest version of the building code, so that you're not building a structure today that is already beneath modern building code standards. Click below to get a copy of the updated cheatsheet: Thanks & have a great rest of your week!
I have a little different spin on things this week that I'm excited to share.
Last month I wrote a bit about flow coming from hydrants and included PDF flow charts relating the measured pitot pressure to the estimated flow coming from the orifice. But what is a Coefficient of Discharge? Check out this new video below - it is a sample from our MeyerFire University platform that we're creating for later this fall. If you don't see the video, click here. This is all new format for this site, so I'm eager to hear what you think. Comment below or shoot me an email at [email protected]. Thanks and have a great rest of your week! Drainage from a fire sprinkler system can often be overlooked as it does not directly fight the fire. However, those involved in inspections & testing of sprinkler systems know all too much about how poor drain design for a sprinkler system can negatively impact how tests are conducted, how long it takes a system to drain, and what messes building owners have to deal with. Here are various components for drains on a sprinkler system, and some of the common requirements that pair with them. For best viewing of the table below, click here: requirements-for-drains-in-fire-sprinkler-systems.html
Most of my articles don't necessarily break new ground - and that's intentional. There are a lot of people smarter than myself who volunteer for many years to contribute to the codes and standards we have today. My role, as I've seen it for some time, is helping share lessons learned and my understanding of those topics. When we share our knowledge, we all help create a world a little more safe from fire. After writing off and on for five years now (woah!), I finally have something that might be a new contribution to the industry. Not in a real or tangible way, but something that may just not have been thought about exactly like this before. I've asked around and I haven't seen this concept out in the world before, so I think this could be something new. It could also have very well been thought about and published 30 years ago and just got buried in history. If so, I'll disclaim credit. My father in-law is a mechanical engineer in research and product development, and for years he's help spur ideas and help kick around new things to try. He once said (perhaps jokingly) that to really make a dent in the world you have to name some kind of industry contribution after yourself. Well, today's the day. I'm calling this concept the Meyer Box. I know, I know. This is so profound and earth-shattering. I'm so glad I've come up with such a great name for what could be my only real new-ground breakthrough to date. Also, if there aren't enough things named Meyer-something around here, I felt it my duty to throw yet another thing into the mix. So if you were itching for more Meyer, then my friend today is your day. The concept started with the way we lay out smoke detectors. We're allowed to space smoke detectors 30-feet apart, or, as an alternative, any location as long as all points within a room are within 21-feet. I wrote an article about this (often-overlooked) method some time ago. Sprinkler spacing follows similar logic; except there is an allowable coverage area, per sprinkler, and a maximum spacing that sprinklers can be apart. Why isn't there some shape for a sprinkler, that if all floor areas are covered in it, that protection is appropriate? Like all my typical daydreaming, I immediately was forced to spend the rest of the billable hours that day jumping further and further down a wormhole of algebra and confusion. If you've ever worked with an architect on a sprinkler layout, you know they love to draw circles around sprinklers and spot-the-dot in a very crude way. Is it accurate? No. Does it meet code? No. Does it get them where they need to go? Not really, but they seem to think so. If a circle doesn't work, there's got to be some natural geometric relationship (a shape) that would work. That's when I got to experimenting and back to some basic math. Light Hazard Light Hazard rules are basic, and they result in a basic shape. Non-combustible (or combustible unobstructed) standard spray upright & pendent sprinklers get 225 sqft per sprinkler, and a maximum spacing of 15-feet according to NFPA 13. First, I drew a sprinkler (above). Next, I copied the sprinkler to the maximum spacing for Light Hazard, 15-feet to the right: What is the maximum distance these two sprinklers can be copied vertically and not be overspaced? For Light Hazard, that's easy - 15-feet. The 15-ft x 15-ft spacing is exactly 225 sqft total, which is right at the maximum spacing per sprinkler: Now, if we attribute sprinkler coverage to each of these sprinklers, the dividing line would simply be the midpoint between each sprinkler, effectively creating just a 15-ft x 15-ft box around each sprinkler. For light hazard, this "box" is easily understood, and is basic. Things get more interesting when our coverage area is limited to 130 square feet per sprinkler, like we often see for Ordinary Hazard. Ordinary Hazard Using the same approach, let's start with a single sprinkler, ad then copy to a maximum spacing of 15-feet to the right: Now, in order to not exceed 130 square feet per sprinkler, what is the maximum these two sprinklers can be spaced in the opposite direction? That would be 130 sqft / 15-feet, or 8.67-feet to the north: Now for the sake of trying to attribute an area to each sprinkler, let's identify the exact intersection of coverage between these four sprinklers. It would be the midpoint of all four sprinklers, here: Note here that if the north-to-south distance was less than 8'-8", we would still have compliant coverage. This is the maximum spacing between these sprinklers to still accommodate 130 sqft per sprinkler. But what if our spacing in the east-west direction was less than 15-feet? Say it's 13-feet. Here's where that new midpoint lands: Keeping that original sprinkler in the same place, we can repeat this process over and over again re-spacing the other three sprinklers in their maximum configuration: If we keep running this process over and over, we start to see a trend in how this boundary exists: Around each sprinkler, there's a natural boundary line, where if every sprinkler's box covers the floor area, then the 130 sqft-per-sprinkler coverage area is met. This new box around the original sprinkler is what we're talking about. If this box stays with each sprinkler, then as long as all of the floor area is covered within a sprinkler's box, the coverage rules are met. Let's look at what this does practically when laying out sprinklers: Why would this be helpful? For one, you can now instantly see whether a layout adequately covers all floor areas. Think less dimensioning and hand-calculating whether a sprinkler is overspaced at 130 sqft. For two, as you're laying out a system, it's easy to snap to the maximum opposite dimension. In the video above, I entered in 13-feet in the east-west direction, and 10-feet in the north-south direction. That's 130 sqft per sprinkler. However, with this box I could also just select the box and copy from the intersection of the boxes. Above, this would be a code-compliant layout. There are no gaps in these coverage boxes. There are exceptions to this to watch, though. Irregular boundaries might be inside a coverage box, but would exceed the maximum spacing or 130 sqft for the sprinkler. These are exceptions though, and don't come up often. When I lay out sprinklers I evaluate these one-off scenarios when they crop up, and address them at that time. Could the same shape be performed for a 100 sqft limitation? Yes, it can. Here's what a 100 sqft limit with 12-ft max spacing would look like: Mathematically, how are these curves defined? If a sprinkler is at (0,0) on an X-Y coordinate graph; to get any Y-coordinate on the 130 sqft box the equation would be Y = 32.5 / X (where X is the X-coordinate, and is between 4.3 and 7.5). Why is this a power function? Simple - X x Y = 130 sqft. If we're drawing a curve to represent one-fourth of the overall area, then we take X x Y = 130 / 4, or, rearranged, Y = (130/4x) = 32.5 X. Where would we draw the line for the 100 sqft box? Similar premise: Y = 25 / X (where X is the X-coordinate, and is between 3.9 and 6) Importance Why is this relevant? Having coverage boxes for sprinklers can be a huge time saver if used appropriately. Model these in CAD blocks or Revit families and the time saved on sprinkler layouts and review alone could be major. How do I draw these up? Are there familes or CAD blocks I can use? Yes - I've drawn these myself and uploaded the files for paid members here. Just login and download these files. Feedback
Have you used anything similar before? What are your thoughts? Comment on the blog here (www.meyerfire.com/blog) or shoot me an email at [email protected]. Always interested in your take. Have a great rest of your week! A year ago I published an updated flowchart on fire sprinkler requirements for Porte-Cocheres, Canopies & Overhangs under NFPA 13. Since then I've had a few requests for sprinkler requirements for Balconies that are under NFPA 13R. Today I'm happy to say that it's finally here; a cheatsheet for when a sprinkler is required for balconies, porches, and other similar exterior projects for NFPA 13R. Take a look and let me know what you think!
We believe that shared knowledge and sharp resources make for better fire protection all around. Our goal here at MeyerFire is to help fire protection professionals thrive, which in turn makes a more informed, safer world and a better industry all-around. That really is our credence. I plan to talk a little more on that next week, but for this one I hope you have a great rest of your week! Keep fighting the good fight. One of the most-requested tool features was not technical - we wanted color! I'm happy to say that with today's new updated release of the MeyerFire Toolkit we now have just that - different color options to match your company's look: It sounds incredibly simple, but this one took a little while to work out the kinks. At least we rocked out to 90's jock jams while doing the updates, which may or may not have influenced the bright color choices. To get this update, download the latest version of the Toolkit here: www.meyerfire.com/download. If you aren't a Toolkit user, you can get a copy here - www.meyerfire.com/toolkit. Thanks & have a great week! A quick update this week - back in 2018 I put together a flowchart for when sprinklers are required in closets. It was nice and had some nice feedback, but it only pertained to the 2016 Editions of NFPA 13, 13D, and 13R. This week I went back and made some major updates for references from the 2002 through the 2019 Editions for each of these standards. This cheatsheet is a little more printer-friendly (11x17) and simplified to the NFPA 13, 13D and 13R standards.
If you're a fan of these cheatsheets and flowcharts, check out the Toolkit. For a limited time we've set up an instant-download of all the latest cheatsheets immediately when you subscribe. If you're already a subscriber, great! Just login for the link. Hope you have a great rest of your week! |
ALL-ACCESSSUBSCRIBEGet Free Articles via Email:
+ Get calculators, tools, resources and articles
+ Get our PDF Flowchart for Canopy & Overhang Requirements instantly + No spam
+ Unsubscribe anytime AUTHORJoe Meyer, PE, is a Fire Protection Engineer out of St. Louis, Missouri who writes & develops resources for Fire Protection Professionals. See bio here: About FILTERS
All
ARCHIVES
January 2025
|